Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules.
نویسندگان
چکیده
The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spicules in strata older than the Cambrian. This temporal disparity highlights a problem with our understanding of the Precambrian fossil record--either these supposed demosponge-specific biomarkers were derived from the sterols of some other organism and are simply retained in modern demosponges, or spicules do not primitively characterize crown-group demosponges. Resolving this issue requires resolving the phylogenetic placement of another group of sponges, the hexactinellids, which not only make a spicule thought to be homologous to the spicules of demosponges, but also make their first appearance near the Precambrian/Cambrian boundary. Using two independent analytical approaches and data sets--traditional molecular phylogenetic analyses and the presence or absence of specific microRNA genes--we show that demosponges are monophyletic, and that hexactinellids are their sister group (together forming the Silicea). Thus, spicules must have evolved before the last common ancestor of all living siliceans, suggesting the presence of a significant gap in the silicean spicule fossil record. Molecular divergence estimates date the origin of this last common ancestor well within the Cryogenian, consistent with the biomarker record, and strongly suggests that siliceous spicules were present during the Precambrian but were not preserved.
منابع مشابه
Late Eocene siliceous sponge fauna of southern Australia: reconstruction based on loose spicules record.
An abundant and diversified assemblage of siliceous loose sponge spicules has been identified in the Late Eocene deposits cropping out along the southern coasts of Australia. Based on the comparison of the obtained spicules with those of living sponges, representatives of at least 43 species within 33 genera, 26 families, and 9 orders of "soft" Demospongiae and Homoscleromorpha have been identi...
متن کاملReconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott.
The relationships of the sponge classes are controversial, particularly between the calcareous and siliceous sponges. Specimens of the putative calcarean Eiffelia globosa Walcott from the Burgess Shale show the presence of diagnostic hexactinellid spicules integrated into the skeletal mesh. The arrangement of these spicules in Eiffelia is shown to be precisely equivalent to that of early protos...
متن کاملSiliceous spicules enhance fracture-resistance and stiffness of pre-colonial Amazonian ceramics
Pottery was a traditional art and technology form in pre-colonial Amazonian civilizations, widely used for cultural expression objects, utensils and as cooking vessels. Abundance and workability of clay made it an excellent choice. However, inferior mechanical properties constrained their functionality and durability. The inclusion of reinforcement particles is a possible route to improve its r...
متن کاملPrecambrian sponges with cellular structures
Sponge remains have been identified in the Early Vendian Doushantuo phosphate deposit in central Guizhou (South China), which has an age of approximately 580 million years ago. Their skeletons consist of siliceous, monaxonal spicules. All are referred to as the Porifera, class Demospongiae. Preserved soft tissues include the epidermis, porocytes, amoebocytes, sclerocytes, and spongocoel. Among ...
متن کاملCarbonaceous preservation of Cambrian hexactinellid sponge spicules.
Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2010